
Discovering Insider Threats from Log Data with
High-Performance Bioinformatics Tools

Markus Wurzenberger, Florian, Skopik,
Roman Fiedler

Austrian Institute of Technology, Digital Saftey
and Security Department

Donau-City-Strasse 1
1220 Vienna, Austria

firstname.lastname@ait.ac.at

Wolfgang Kastner
Vienna University of Technology, Institute of

Computer Aided Automation
Treitlstrasse 3

1040 Vienna, Austria
k@auto.tuwien.ac.at

ABSTRACT
Since the number of cyber attacks by insider threats and
the damage caused by them has been increasing over the
last years, organizations are in need for specific security so-
lutions to counter these threats. To limit the damage caused
by insider threats, the timely detection of erratic system be-
havior and malicious activities is of primary importance. We
observed a major paradigm shift towards anomaly-focused
detection mechanisms, which try to establish a baseline of
system behavior – based on system logging data – and report
any deviations from this baseline. While these approaches
are promising, they usually have to cope with scalability
issues. As the amount of log data generated during IT oper-
ations is exponentially growing, high-performance security
solutions are required that can handle this huge amount of
data in real time. In this paper, we demonstrate how high-
performance bioinformatics tools can be leveraged to tackle
this issue, and we demonstrate their application to log data
for outlier detection, to timely detect anomalous system be-
havior that points to insider attacks.

CCS Concepts
•Security and privacy→ Intrusion detection systems;
Systems security; Network security; •Information systems
→ Data mining;

Keywords
log data clustering; anomaly detection; outlier detection

1. INTRODUCTION
Many of today’s ICT security solutions promise an au-

tomatic detection (and even mitigation) of malicious sys-
tem behavior. They apply complex detection schemes and
heuristics, yet the financial loss caused by cyber attacks is
inexorably increasing. In 2014, the financial damage caused

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MIST’16, October 28 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4571-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2995959.2995973

by insider attacks was estimated to 575 billion dollars1. An
insider threat can either be an employee of the organiza-
tion or an outside person who pretends to be an employee
by using stolen or false credentials. Most insider threats
are employees or ex-employees, who either believe that they
have been mistreated by their company and want to take
revenge, plan to sell intellectual properties, or were involved
in illegal activities and seek to hide traces by manipulating
internal data (e.g., logs of financial transactions). Insider
threats usually result in data ex-filtration (theft of intellec-
tual property) and deletion, financial loss or sabotage. Ef-
fectively combating insider threats requires deploying data-
centric instead of system centric security, data encryption
and data access logging, as well as establishing centralized
logging, which allows determining a baseline of normal sys-
tem behavior, and finally using intrusion detection/preven-
tion systems (IDS/IPS), SIEMs, outlier detection and other
log analysis tools for detecting threats.

1.1 Insider Threat Scenario
Figure 1 outlines a company’s network environment, con-

sisting of client machines and company internal services.
Employees can connect to the internal services only through
the firewall. For example a whitelist can prevent connec-
tions from external devices using an unknown IP address
and MAC address (if we neglect spoofing attacks). However
some employees need direct access to the database. If one
considers a web-based customer relationship management
(CRM) portal, for example common sales employees only
have access to the database through the web servers, which
allows them only to access information related to their spe-
cific working area and not to access confidential information
such as banking accounts; the sales manager instead has
direct access to the database server and to all information
stored there. Figure 1 describes the following two possible
scenarios of an attack by an insider threat:

(i) The insider attacker starts ex-filtrating the database,
which heavily raises the number of logged queries re-
lated to the database server. This data ex-filtration
would not violate any firewall rule and also the access
to the database would not be suspicious; only the fre-
quency of accesses would be anomalous. While it is
hard to design a rigid rule-based schema to prevent

1http://www.mcafee.com/us/resources/reports/rp-
economic-impact-cybercrime2.pdf

Database
Server

(192.168.0.202)

Web Server
(192.168.0.201)

Mail Server
(192.168.0.203)

Log Server
(192.168.0.204)

Employee
Machine A

(192.168.0.10)

Manager
Machine

(192.168.0.11)

Employee
Machine B

(192.168.0.12)

Firewall

Syslog

Malicious Access

Company Internal Services

Figure 1: Description of an insider attack. The
dashed red line represents a malicious database ac-
cess, the dashed green lines represents normal ac-
cesses.

such attacks, log line clustering and applying a time
series analysis allow to detect a change in the way the
database server is utilized, and thus the attack.

(ii) The second scenario can be either caused by a miscon-
figuration or by information leakage. Misconfiguration
– the port the manager uses to directly connect to the
database is open for every employee and an insider
threat only needs to find out the port number to con-
nect directly to the database. Information leakage –
The attacker found out the administrator credentials
to get direct access to the database server. In both
cases, the insider attacker uses the malicious access
path (marked by the dashed red arrow in Fig. 1) to
connect to the database server. This insider threat
attack can be detected by clustering for outlier detec-
tion. There will exist no cluster describing a direct
access to the database server with the IP address and
MAC address used by employee’s machine B.

1.2 Application of Bioinformatics Tools
Clustering techniques are very effective tools for periodi-

cally reviewing rare events (outliers) and checking frequent
events by comparing cluster sizes over time (e.g., trends in
the number of requests to certain resources). Furthermore, a
methodology and supporting tools to review log data and to
find anomalous events in log data are needed. Existing so-
lutions are suitable to cover all these requirements, but they
still show crucial deficits. Most of them, such as SLCT [4],
implement word-based matching of log entries, but do not
identify synonyms which only differ in one character, such
as ‘php-admin’ and ‘phpadmin’, or identify similar URLs
as completely different words. Hence, the implementation
of character-based matching with comparable speed such
as word-based matching is necessary. Furthermore, exist-
ing tools are often not useable for processing large log files
to extract cluster candidates over months and to perform
gradual logging, which can be applied to generate a base
corpora to identify how and where log clusters are changing
over time.

In the domain of bioinformatics, various methods have
been developed to analyze and study the similarity of bi-
ologic sequences (DNA, RNA, amino acids), group similar
sequences and extract common properties. The algorithms
to implement these features need to fulfill some strict re-
quirements: (i) adequate digital representation, (ii) dealing
with natural variations, (iii) dealing with artificial inaccura-

cies, (iv) dealing with massive data volumes.
In general, all these requirements also apply to modern log

data processing as (i) data needs to be processed extremely
fast (this means depending on the application approximately
in real time); (ii) data analysis needs to be scheduled in
parallel in order to scale; and (iii) the process needs to ac-
cept certain inaccuracies and errors that occur due to con-
version errors from varying character encodings, and slight
differences in configurations and output across software ver-
sions. Furthermore, these tools aim at processing character
sequences without taking into account their semantics.

As a consequence, if the mentioned tools are not applied
to biologic sequences but to re-coded (converted) digital se-
quences, such as log data (or even malware code), all of
the peculiar properties of algorithms can be harnessed di-
rectly, without the need to design and implement complex
tools again. Sequence alignment algorithms that compare
two amino acid sequences are for example the Needleman-
Wunsch algorithm and the Smith-Waterman algorithm [3].
Algorithms for clustering amino acids that exploit sequence
alignment are CD-HIT, CLUSTAL, UCLUST and DNA-
CLUST [1].

In this paper, we define a method for re-coding log data
into the alphabet used for representing canonical amino acid
sequences, which enables the application of high-performance
bioinformatics tools for outlier detection in the domain of
log data processing. The proposed model implements a self-
learning white-listing approach, that does not account for
any knowledge about syntax and semantics of the processed
log data,

The remainder of the paper is structured as follows. Sec-
tion 2 describes the theoretical model of our approach for
discovering outliers and Sect. 3 evaluates our approach.
Finally, Sect. 4 concludes the paper and discusses future
work.

2. MODEL FOR APPLYING BIOINFORMAT-
ICS CLUSTERING TOOLS ON LOG DATA

The following section defines the theoretical model for ap-
plying high-performance bioinformatics tools for clustering
computer log data. The proposed modular model comprises
several steps from re-coding log data to the alphabet used
for describing amino acid sequences to interpretation and
analysis of the output for cyber security application: (i) re-
code and format log data, (ii) compare pairs of log lines
according to their degree of similarity, (iii) cluster log lines,
(iv) re-translate data, (v) detect outliers.

2.1 Re-coding Model
Log data from ICT systems is usually modeled in human-

readable textual form. Therefore, before tools from the do-
main of bioinformatics can be applied to it, step (i) has to be
carried out, i.e., re-coding the log data using the alphabet
used for representing amino acids and converting it into a
format, which can be exploited by the applied tools.

A basic unit of logging information, e.g., one line for line-
based logging, or one XML-element, is called a textual log
atom Ltext which consists of a series of symbols s – typically
letters and numbers (Eq. 1).The used alphabet to represent
log data consists (in most cases) of UTF-8 encoded charac-
ters (256 different symbols). In the following, AUTF−8 refers
to this alphabet.

Ltext = 〈s1s2s3 . . . sn〉 where si ∈ AUTF−8 (1)

However, data represented in this format is unsuitable as
input to bioinformatics tools. Such tools require input (bio-
logic sequences) encoded with symbols of the alphabet Abio

defined for amino acid or DNA sequences. This alphabet
consists of 20 symbols only, which represent the 20 canoni-
cal amino acids.

A re-coding function takes an input stream encoded as
UTF-8 data and transforms it into a representation Lbio

(Eq. 2) that is processable by bioinformatics tools.

Lbio = 〈s1s2s3 . . . sm〉 where sj ∈ Abio (2)

In the simplest case, this transformation is a straightfor-
ward bijective mapping, where one AUTF−8 symbol is repre-
sented by two symbols from Abio. However, for data where
certain larger blocks frequently appear, those whole blocks
(e.g., server names or IP addresses) could be replaced with
a single symbol. This would effectively allow compression of
data. Even further information loss could be – depending
on the application – acceptable. For instance, frequently ap-
pearing symbol blocks could be replaced by applying a more
intelligent, but one-way mapping, e.g., not a whole IP ad-
dress but just the last byte or the address’ cross sum could
be translated to Abio. Another example are paths (from
Web server logs), where each component of a path could be
translated through hashing into single symbols of Abio. Fur-
thermore, symbols can be grouped by type, so that all sepa-
rators such as ’/’, ’;’ or spaces can be replaced by one specific
element of Abio. Finally, more symbols could be spent on
the variable parts of log lines (those with higher entropy)
and less symbols (or no symbols at all) on the rather static
parts.

One simple - but effective - method for re-coding log data
into Abio is to convert symbol by symbol each si ∈ Ltext into
two corresponding sj ∈ Lbio symbol by symbol (without any
loss of information). For this purpose, each symbol in Ltext

(i.e., the single letters of the words in a log line) is converted
to its numerical representation in UTF-8. The result of this
operation is Lutf (Eq. 3).

Lutf = 〈a1, a2, a3 . . . an〉 where ai ∈ {0, . . . , 255} (3)

In a second step, each numerical value ai ∈ Lutf is con-
verted into two symbols of the alphabet Abio. Since the
size of this alphabet is always 20, a straightforward solution
(which uses the whole possible input range) is to divide each
ai ∈ Lutf by 20, and additionally keep the rest of this di-
vision. Eventually, both results s1 (the result of the integer
division) and s2 (the rest of the division) are mapped via
a simple conversion table to Abio. Concatenating all these
symbols in a single stream effectively produces Lbio – the
input to alignment and clustering tools from the domain of
bioinformatics.

The re-coding process is further described in Alg. 1. Func-
tion utf2num looks up the decimal symbol number in a stan-
dard UTF-8 table (e.g., the letter ‘A’ corresponds to the
number 65). The function num2bio looks up the letter rep-
resentation of the numbers 0 to 19.

A simple option to reduce/compress the amount of data
needed to represent one log line by 50% is to omit the leading

Algorithm 1 Re-Coding Ltext into Lbio

1: Lbio ← ∅
2: Lutf ← ∅
3: for all si ∈ Ltext do
4: Lutf ← Lutf ⊕ utf2num(si)
5: end for
6: for all ai ∈ Lutf do
7: s1 ← ai/20
8: s2 ← ai%20
9: Lbio ← Lbio ⊕ num2bio(s1)⊕ num2bio(s2)

10: end for

character s1, instead of representing each si ∈ Ltext by two
sj ∈ Lbio (cf. Alg. 1). This character – s1 – has lower
entropy compared to the trailing s2 (cf. Alg. 1). As a result
the length of Lbio can effectively be halved by accepting a
”small” ambiguity. In the following, we always apply this
method for recording Ltext into Lbio.

To complete step (i), the data has to be transformed into
the correct format. Most of the bioinformatic tools require
data in the FASTA format2. The FASTA format requires
a header, which can be used to store information for the
re-translation implemented by step (iv).

2.2 Comparing and Clustering Log Data
In this section we describe how log lines re-coded into Lbio

can be compared by applying sequence alignment algorithms
and how they then can be clustered based on their similarity.

2.2.1 Pairwise Log Line Comparison
Sequence alignment algorithms, which are applied in step

(ii) to compare two log lines, form the base for most bio-
clustering tools. Alignment algorithms use a scoring func-
tion d to calculate the distance between two sequences. When
comparing two sequences LA

bio and LB
bio element by element,

three possible cases can occur:mismatch (symbol sAj was re-

placed by symbol sBj), deletion (symbol sAj was removed in

LB
bio, insertion (symbol sBj was inserted in LB

bio).
The alignment between two amino acid sequences is al-

ways built under the assumption that LA
bio and LB

bio have
common ancestors, i.e., they are homologous. This means
in the end the alignment which refers to the highest simi-
larity is chosen. A similarity score specifies how similar two
amino acid sequences are. The predefined score for a match
is usually constant. In most cases, the score for a mismatch
depends on the probability that sAj can evolve to sBj over
time. The score for a gap caused by deletions or insertions
is also predefined and can depend on the size of the gap, or
if a gap is opened or just extended. The simplest definition
for a scoring function d relies on unit costs and does not
take into account that sAj could evolve to sBj by a specific
probability:

d(sAj , s
B
j) =

{
1 if sAj = sBj ,

−1, is sAj 6= sBj ,
(4)

and −1 for deletions and insertions. When comparing two
amino acid sequences, there are usually various options to
build the alignment (c.f. Tab. 1). In our model, since the
sequences considered as homologous, the alignment with the
highest score is chosen, because a higher score suggests a
higher similarity.

2https://blast.ncbi.nlm.nih.gov/Blast.cgi

option alignment score similarity

(i)
GAC
GC-

1− 1− 1 = −1 33.33%

(ii)
GAC-
--GC

−1− 1− 1− 1− 1 = −5 0%

(iii)
GAC
G-C

1− 1 + 1 = 1 66.66%

Table 1: Example alignments
In the proposed model, the similarity, between the two

amino acid sequences can be calculated as the ratio between
the number of identical symbols in the alignment and the
length of the alignment as shown in Eq. (5). Equation (5)
is a normalized version of the inverted Lvenshtein distance,
i.e., the identical symbols are calculated instead of the num-
ber of changes. The third column of Tab. 1 shows the
similarities based on Eq. (5).

similarity =
identicalSymbolsAlign(LA

bio, L
B
bio)

lengthOfAlign(LA
bio, L

B
bio)

(5)

2.2.2 Log Line Clustering
Step (iii) performs clustering log data and is based on the

previously defined alignment of two bio-encoded log lines.
By re-coding a whole log data set and subsequent pairwise
comparison of bio-encoded log lines through sequence align-
ment, distances can be determined by calculating the simi-
larity of two sequences (cf. Eq. (5)). Clustering tools then
cluster the bio-encoded sequences so that the distances be-
tween any two cluster members ci ∈ C, cj ∈ C is lower than
the distance to the next cluster center. This analysis can be
performed with various existing bio-clustering tools, such as
CD-HIT3.

For further analysis of the clustering output, the sequences
have to be re-translated into understandable text – this is
done in step (iv). The FASTA format provides the possibil-
ity to store the position of a log line in the original log file
in the header. Using this information, it is possible to look
up the corresponding log line for each bio-encoded sequence
in the input log file.

2.3 Outlier Detection
The following section deals with step (v) – outlier detec-

tion for detecting anomalies [2]. Outlier detection aims at
identifying so called point anomalies. These outliers are
clusters including just a small amount of elements and/or
usually a large distance to other clusters, which define the
normal state of an network environment. In case of log data,
outlier clusters include rare or atypically structured events
(log entries). Those outliers are log entries that require
further investigations. Eventually, the previously defined
model allows to apply high-performance tools from the do-
main of bioinformatics on log data to cluster log lines. Dur-
ing the re-translation from Abio to AUTF−8 the clusters can
be sorted by their size to detect clusters of small size, which
represent outliers.

3. EVALUATION
To test the proposed approach we implemented a pro-

totype which applies CD-HIT for clustering. Furthermore
we generated a semi-synthetic dataset simulating the in-
sider threat (ii) described in Sect. 1.1. We tested both

3http://weizhongli-lab.org/cd-hit/

proposed methods for re-coding and could detect the gen-
erated outliers with a similarity threshold of 92%, when re-
coding without information loss, and 88% when re-coding
wih loss of information. As a result the false positive rate
for the second method was slightly lower. Furthermore, we
observed that the runtime of the algorithm scales linearly
with the number of processed log lines.

4. CONCLUSION AND FUTURE WORK
This paper describes a novel model, which allows to ap-

ply high-performance bioinformatics tools in the context of
anomaly detection on log data produced in computer net-
works. Since most of the bioinformatics tools operate on
canonical amino acid sequences, we introduced two different
methods to re-code log data coded in UTF-8 code (255 sym-
bols), to the alphabet of canonical amino acids (20 symbols).
We further demonstrated how the re-coded log data can be
clustered applying bioinformatics algorithms and tools for
generating sequence alignments, and we described how the
output can be used for outlier detection to reveal anomalous
system behavior.

In the future, we plan to focus on further development of
the re-coding model described in Sect. 2.1 and the scoring
system defined in Sect. 2.2.1. We intend to modify the re-
coding function, so that often re-occurring parts of log files
(e.g., static texts) are translated into less symbols and there-
fore accept a higher loss of information for these parts; less
frequent parts, which include the more interesting variable
parts (e.g., IP addresses, user names, port numbers) of log
lines, should be translated without loss of information. We
also plan to investigate if the scoring system can be adjusted
so that similarly to the analysis of amino acid sequences, the
penalty score is lower for highly related letters and higher
in otherwise. Moreover, we aim to present a detailed eval-
uation of the proposed model to demonstrate the detection
capability, the accuracy and precision, as well as the effi-
ciency of our approach. Moreover, we want to compare our
approach with already existing methods. We finally intend
to investigate how our approach can be used for time series
analysis to detect different attack patterns.

Acknowledgments
This work was partly funded by the European Union FP7
project ECOSSIAN (607577) and carried out in course of a
PhD thesis at the Vienna University of Technology funded
by the FFG project BAESE (852301).

5. REFERENCES
[1] M. Ghodsi, B. Liu, and M. Pop. Dnaclust: accurate

and efficient clustering of phylogenetic marker genes.
BMC bioinformatics, 12(1):1, 2011.

[2] V. J. Hodge and J. Austin. A survey of outlier
detection methodologies. Artificial Intelligence Review,
22(2):85–126, 2004.

[3] D. W. Mount. Sequence and genome analysis.
Bioinformatics: Cold Spring Harbour Laboratory Press:
Cold Spring Harbour, 2, 2004.

[4] R. Vaarandi. A data clustering algorithm for mining
patterns from event logs. In IPOM, pages 119–126, Oct
2003.

