
Incremental Clustering for Semi-Supervised Anomaly Detection
applied on Log Data

Markus Wurzenberger, Florian Skopik, Max
Landauer, Philipp Greitbauer, Roman Fiedler

Austrian Institute of Technology, Austria
�rstname.lastname@ait.ac.at

Wolfgang Kastner
Vienna University of Technology, Austria

k@auto.tuwien.ac.at

ABSTRACT
Anomaly detection based on white-listing and self-learning has
proven to be a promising approach to detect customized and ad-
vanced cyber attacks. Anomaly detection aims at detecting sig-
ni�cant deviations from normal system and network behavior. A
well-known method to classify anomalous and normal system be-
havior is clustering of log lines. However, this approach has been
applied for forensic purposes only, where log data dumps are in-
vestigated retrospectively. In order to make this concept applicable
for on-line anomaly detection, i.e., at the time the log lines are
produced, some major extensions to existing approaches are re-
quired. Especially distance based clustering approaches usually
fail building the required large distance matrices and rely on time-
consuming recalculations of the cluster-map on every arriving log
line. An incremental clustering approach seems suitable to solve
this issues. Thus, we introduce a semi-supervised concept for incre-
mental clustering of log data that builds the basis for a novel on-line
anomaly detection solution based on log data streams. Its operation
is independent from the syntax and semantics of the processed log
lines, which makes it generally applicable. We demonstrate that
that the introduced anomaly detection approach allows to achieve
both a high recall and a high precision while maintaining linear
complexity.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Sys-
tems security; Network security; • Information systems → Data
mining; • Computer systems organization → Embedded sys-
tems; Redundancy; Robotics; • Networks → Network reliability;

KEYWORDS
log line clustering; anomaly detection; intrusion detection
ACM Reference format:
Markus Wurzenberger, Florian Skopik, Max Landauer, Philipp Greitbauer,
Roman Fiedler and Wolfgang Kastner. 2017. Incremental Clustering for
Semi-Supervised Anomaly Detection applied on Log Data. In Proceedings of
ARES ’17, Reggio Calabria, Italy, August 29-September 01, 2017, 6 pages.
DOI: 10.1145/3098954.3098973

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ARES ’17, Reggio Calabria, Italy
© 2017 ACM. 978-1-4503-5257-4/17/08. . . $15.00
DOI: 10.1145/3098954.3098973

1 INTRODUCTION
In recent years the Internet and its network tra�c have been grow-
ing exponentially. This trend is likely to continue in the future, since
the interconnectivity and digitalization in economy and private life
is continuously increasing. All activities that take place in a network
and on connected devices are potentially protocoled in log �les.
Hence, these log �les provide a detailed overview of what events
occur in a network environment. Therefore, verbose log data is a
valuable information source for security analysis that is represented
in human-readable text format. Thus, the provided information can
be easily and fast accessed, without any time-, computational- and
resource-intensive preprocessing, which is required to extract high
level information from network packets. This allows processing log
lines on-line, i.e. at the time they are produced.

In this paper, we introduce an anomaly-based detection approach
that is designed to identify anomalous events on-line. Note, an
anomaly can be related to an attack, mis-con�guration or any other
misuse of the system that violates the normal system behavior.
Hence, we demand high performance (large throughput of log lines
per second), and high scalability, so that the approach becomes
applicable to large-scale ICT networks.

We propose a semi-supervised clustering approach to detect
anomalous system behavior. Clustering has been proven to be a
feasible method to de�ne a behavior model of an ICT system based
on log data. This model characterizes the normal system behavior,
and new occurring log lines can be compared against this baseline
to detect anomalies.

Log data exposes two major properties, which make clustering
challenging: (i) the amount of log data is rapidly growing – modern
ICT networks produce millions of log lines every day – and (ii)
log data is rather dynamic – ICT network infrastructures and user
behavior change quickly. Hence, clustering approaches that are
applied for on-line anomaly detection have to ful�ll some essential
requirements: (i) process data timely, i.e. in real-time, (ii) adopt
the cluster-map promptly and (iii) deal with large amounts of data.
Nevertheless, existing approaches, that usually process all clustered
data at once, su�er from three major drawbacks, which make them
unsuitable for on-line anomaly detection in log data:

• Static cluster-maps: Adapting/updating a cluster-map is
time consuming and computational intensive. If new data
points occur that account for new clusters, the whole
cluster-map has to be recalculated.

• Memory intensive: Distance-based clustering approaches
are limited to the available memory, because large distance
matrices have to be stored – depending on the applied
distance metric, n2 or n2

2 elements are stored.

1

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy M. Wurzenberger et al.

• Computational intensive: Log data is stored as text data.
Therefore, string metrics are applied to calculate the dis-
tance (similarity) between the log lines. Their calculation
is usually computationally intensive.

To solve this issues, we introduce an incremental clustering
approach that processes log data on-line in streams to enable on-
line anomaly detection in ICT networks. We propose a concept
with the following novel features:

• The processing time of incremental clustering grows lin-
early with the rate of input log lines, without rearrange-
ment of the cluster-map. The distances between all log
lines do not need to be stored.

• Fast �lters reduce the number of distances that have to
be calculated. A semi-supervised approach based on self-
learning reduces the e�ort for a system administrator.

• The modularity of our approach allows the application
of di�erent existing metrics to build the cluster-map and
carry out the anomaly detection. We compare the most
promising string distance metrics, against each other and
a method based on principal component analysis (PCA),
adopting a numeric distance metric.

• Our approach enables detection of point anomalies – sin-
gle anomalous log lines – by outlier detection. Collective
anomalies – anomalous number of occurrences of normal
log lines, that represent a change in the system behavior –
could be detected through time series analysis.

The paper is structured as follows: Section 2 summarizes back-
ground related work. Section 3 provides a detailed explanation of
our approach for incremental clustering for detecting anomalies in
log data, and de�nes the applied models. The approach is evaluated
in Sect. 4 and �nally, Sect. 5 concludes the paper.

2 BACKGROUND AND RELATEDWORK
Using information and communications technology (ICT) networks
– among all advantages it o�ers – also poses a threat for both indi-
viduals and companies that cross-connect their devices. In order
to reduce the risk of incidents, for example, if someone unnoticed
gaining access, intrusion detection systems (IDS) have been devel-
oped and enhanced over years. There are three main techniques
that IDS use to detect incidents: (i) Signature-based detection, which
compares the current unit of activity with known malicious signa-
tures, (ii) anomaly-based detection that uses especially statistical
methods to identify anomalous behavior that di�ers from normal
system behavior, and (iii) stateful protocol analysis, which relies on
vendor-developed universal rules for protocols [8].

In this paper we present anomaly detection [3] based intrusion
detection approach. According to [5], there are three di�erent ways
to perform anomaly detection: (i) unsupervised – this technique does
not require any labeled data and is able to learn by analyzing the
data it processes and, based on the �ndings, classify any other given
data, (ii) semi-supervised – this method implies that the training set
only contains data without anomalies, and (iii) supervised – this
technique requires a labeled training set containing both normal
and malicious data.

Clustering [1] is a well established method for classifying data.
The major drawbacks of common clustering approaches have been

summarized in Sect. 1 and therefore it is primarily used for forensic
analysis to investigate data retrospectively. Some algorithms that
have been used for clustering log data are SLCT, CLIQUE, MAFIA,
CACTUS, and PROCLUS [11].

3 MODEL DESIGN
The following section describes the proposed concept of incremen-
tal clustering for anomaly detection in ICT networks. In this paper,
we de�ne two models to realize this concept. Figure 1 visualizes
those two models and their di�erences. Model I (MI) deals with
string metrics that are applied to compare two log lines. Filters
reduce the computational complexity and speed up the clustering.
Model II (MI I) follows a numerical distance based approach. First
the textual log data is transformed into the Euclidean space; Princi-
pal Component Analysis (PCA) [9] is applied to reduce the amount
of insigni�cant information; �nally, the Euclidean distance1 – a
numerical distance metric – between two transformed log lines is
calculated to compare them with each other. In both models, the
last step decides whether a processed log line is anomalous or not.
Both models are described in detail in the following.

The section is structured as follows: First the concept of incre-
mental clustering is explained in details. Then model MI and di�er-
ent string metrics are de�ned. Afterwards model MI I is described.

3.1 Incremental clustering
Incremental clustering focuses on high performance in order to
support on-line clustering of fast growing data, such as log data.
One advantage is to prevent recalculation of the whole cluster-map
every time a new data point – log line – occurs. In opposite to
classic clustering approaches, data is processed in streams and not
at once.

In the proposed incremental clustering approach, every cluster
C is de�ned by a cluster representative c . The cluster representative
is the log line l that triggered the creation of the cluster. We de�ne
C as the set of all cluster representatives.

In our approach the log data is processed line by line. First, line
l is sanitized. This means that, among others, indentations are
homogenized because they are represented di�erently in di�erent
systems. For example tabs are represented by di�erent numbers
of spaces. Hence, multiple spaces are removed. Furthermore the
time stamp is removed or blacked out, because it is unique for each
log line and is not relevant for the clustering. A more realistic time
stamp treatment would consider the day and the hour, since the
system behavior changes between days and daytimes, e.g. nobody
might be working in the night or on weekends.

A set of cluster candidates Cl ⊆ C is built; the processed log line
l is compared to all existing cluster representatives ci ∈ C. If the
distance d between l and ci is smaller than a prede�ned threshold
t , i.e. d (l , ci) ≤ t , ci is added to Cl .

After Cl is built, l is added to the closest cluster, i.e. the cluster
with the representative ci ∈ Cl , with the smallest distance d (l , ci).
In case multiple clusters share the same distance, the one �rst found
is used. If Cl = ∅ a new cluster is added to C holding the cluster
representative c = l .

1d (x, y) =
√∑n

i=1 (xi − yi)2

2

Incremental Clustering for Semi-Supervised Anomaly Detection ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Check for
identical
cluster

representatives

Apply length
filter

Apply short
word filter

Calculate string
metrics

Training:
 d<t assign to

closest cluster,
 d>t create new

cluster

Detection:
 d<t process

next line,
 d>t anomaly

detected

Sanitize log line

1 2 3 4 5 6a 6b

Transform log
line into

Euclidean
space

Training: Use
PCA to

calculate
transformation

matrix

Calculate
numeric
distances

Sanitize log line

1 2 3 5 6a 6b

Training:
 d<t assign to

closest cluster,
 d>t create new

cluster

Detection:
 d<t process

next line,
 d>t anomaly

detected

Model MI

Model MII

Transform log
line into lower

dimensional
subspace

4

Figure 1: Work-�ow of modelMI and modelMI I . Steps only needed in the training phase are framed with a dashed line.

Given that we apply this concept of incremental clustering to
perform semi-supervised anomaly detection, thus the process com-
prises a training and a detection phase. During the self-learning
training phase the cluster-map C is built as described before. C de-
scribes a baseline of normal system behavior, the so-called ground-
truth, against which, log lines are tested for detecting anomalies.
During the detection phase every processed log line l , for which
Cl = ∅ holds, after l was compared to all c ∈ C, is considered anoma-
lous. Since in the detection process log lines are tested against a pre-
de�ned baseline of normal system behavior the proposed method
represents a white-listing approach.

We assume that the log data processed during the training phase
is free of anomalies. Hence, the proposed approach can be catego-
rized as semi-supervised. However this is not realistic: The training
phase run on real data could already contain anomalies. To reduce
the negative e�ects of possibly anomalous log lines, clusters that
only contain a single line or an amount of lines that does not exceed
a certain threshold after the training phase, are considered anoma-
lous and are removed from the detection phase. This reduces the
risk that during the training phase anomalous behavior is learned
as normal.

Since the normal system behavior is de�ned after the training,
the maximum number of comparisons during the detection phase
is constant.

3.2 Description of modelMI

Model MI (cf. Fig. 1) implements the concept of incremental cluster-
ing introduced in Sect. 3.1 based on string metrics. The processed
log line l is �rst sanitized (step 1), then the set of cluster candidates
Cl ⊆ C is generated. First, we check if the processed log line already
exists in C (step 2). If so, the line is assigned to the corresponding
cluster. Otherwise a length �lter (step 3) is applied. Clusters C are
kept in Cl only if the length of their cluster representative, |c |, lies
within a prede�ned range of |l |, for example ±10%.

The resulting set of cluster candidates Cl is then �ltered applying
a short word �lter (step 4) that compares the amount of matching k-
mer (substrings of length k) between l and cluster representatives
ci ∈ Cl and removes cluster candidates that have less than the
required number of matches [4]. This method is often used to cluster
biological sequences. Equation (1) calculates the number of required
matching k-mer M to reach a speci�c amount of similarity between
two lines. L is the length of the shorter line, k the length of the
k-mer and p the similarity threshold in percent. Listing 1 shows
the short word �lter.

pos: 01 02 03 04 05 06 07 08 09 10
lineA: # 1 2 3 q u e r y

| | X | | | | | | |
lineB: # 1 4 3 q u e r y
2-mer 1 2 3 4 5 6 7
3-mer 1 2 3 4 5
4-mer 1 2 3 4
5-mer 1 2 3

Listing 1: Example for the short word �lter: Two lines are
compared that di�er in position 03 which is highlighted
with ‘X’. The matching k-mer for k = 1, 2, 3, 4, 5 are marked
with numbers. For example, to reach a similarity of 90% at
least 7 2-mer must match (cf. Eq. (1)) .

M = L − k + 1 − (1 − p)kL (1)

For each remaining cluster representative ci ∈ Cl the distance
d (l , ci) is calculated using a string metric (step 5). Some of the ex-
isting string metrics suitable for this task are listed in the following
section. If for a cluster representative ci the distance d (l , ci) exceeds
the prede�ned threshold t , the cluster is removed from Cl . Finally
(step 6a/6b), the considered log line l is added to the cluster Ci
with the smallest distance d (l , ci). In case Cl = ∅ at the end of the
process: (i) during the training phase a new cluster is created with
representative l (step 6a), (ii) during the detection phase, an alarm
is raised since l represents an anomaly (step 6b).

3.3 String metrics
In order to compute the distance d (la , lb) or similarity s (la , lb)
between two log lines la and lb with their respective lengths |la |
and |lb |, we applied the metrics de�ned in the following sections
and compared the results regarding detection capability, scalability
and computation time described in Sect. 4. The normalized distance
d̃ (la , lb) lies in the interval [0, 1] and can be expressed through a
normalized similarity s̃ (la , lb) by calculating d̃ (la , lb) = 1− s̃ (la , lb).

In the proposed approach, we applied s̃ (la , lb) to calculate the
distances d (l , ci), because the normalized values are more suitable
for comparison, which makes it easier to prede�ne a similarity
threshold t . For our experiments we considered the following met-
rics and compared them [6]: (1) Levenshtein (edit-distance), (2) Jaro,
(3) Sorensen-Dice, (4) Needleman-Wunsch, (5) Longest Common
Subsequence (LCS).

3.4 Description of modelMI I

Model MI I (cf. Fig. 1) implements the concept of incremental clus-
tering introduced in Sect. 3.1 based on numerical distance metrics.

3

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy M. Wurzenberger et al.

Here, the log data is stored as text data and has to be transformed
into the Euclidean space (step 2). There are di�erent reasonable
methods to achieve this transformation. For the sake of simplicity,
we count the number of unique characters in each log line l and
de�ne k as the number of unique characters, which is equal to
the dimension of the considered Euclidean space. We observed
that log �les mostly contain between 80 and 100 unique characters,
because they are usually written in English and only contain speci�c
special characters. Also the use of ASCII characters, which is based
on the English alphabet and consists of 95 printable symbols, is
widespread. The correct number of unique characters k has to be
previously known and can be derived during the training phase.
Furthermore, during the detection phase it must be ensured that
unknown characters are left out. Lines where previously unknown
characters occur should be considered anomalous.

A common problem that arises when clustering high dimensional
data based on distance measures is called the curse of dimensionality
[2]. When increasing the dimension, the di�erence between the
largest and the smallest distance, between points of the considered
data, converges towards zero. As a result, output of distance based
algorithms becomes unusable.

In order to overcome this problem we decided to apply principal
component analysis (PCA; step 3). A detailed description of this
method can be found in [9] and in other related work. PCA allows
to reduce the number of dimensions while as much information as
possible is kept. The method uses an orthogonal transformation
and projects the sample set from a k-dimensional space into am-
dimensional subspace (withm ≤ k). The dimensionm is equal to
the number of considered principal components (PC). The PC are
sorted by their variance starting with the largest and thus each
added PC contributes less information than the one before. The
used transformation is de�ned in Eq (2), where X ∈ Rn×k is a data
set of n elements with k attributes, Γ ∈ Rk×m is the matrix that
stores the �rstm eigenvectors of the covariance matrix of X , which
is required for the transformation that projects X on the �rst m PC
and Y ∈ Rn×m which holds the projection of X onto the basis Γ.

Y = X Γ (2)
The transformation matrix Γ is calculated during the training

phase and then reused to transform new occurring log lines during
the detection phase. Therefore, the detection phase is less computa-
tional intensive than the training phase.

During the training phase n log lines are used to calculate Γ.
Determining the best choice for the number of PCm is not trivial
and depends on the data as well as the dimension k . Our empiri-
cal studies showed that 6 is an appropriate amount of PC for our
anomaly detection approach. A number m lower than 4 resulted in
a low number of true positives and therefore in a large number of
false negatives.

Before a log line l is clustered it is transformed into a numerical
data point lx ∈ Rk in the k-dimensional Euclidean space applying
the previously described method (step 2). Then lx is transformed
into ly ∈ R

m (cf. Eq. (3)) in the m-dimensional subspace (step 4) by
applying Eq. (2). ly = lx Γ (3)

After the transformation matrix Γ is calculated (step 3), the in-
cremental clustering (step 6a) and the anomaly detection (step 6b)
are carried out as described in Sect. 3.1. The cluster representatives

00:00 06:00

00:00 - 04:00

Training phase

04:00 - 06:00

Detection phase

04:00

Refl. XXS

04:30

SQL-Dump

05:00

SQL-Inj. 05:30

Brute Force

Figure 2: Time-line describing the test data generation. The
red crosses mark the four attacks.
c used in model MI I are de�ned as the transformation ly (cf. Eq.
(3)) of the log line l from which clusterC was obtained. As distance
metric (step 5) we use the Euclidean distance d2 =

√∑m
i=1 (ai − bi)

2.
Again, to achieve modularity, also other numerical metrics can be
used.

4 EVALUATION
This section describes the conducted evaluation of the proposed
incremental log line clustering approach for anomaly detection in
log data. We assess the detection capability of our models de�ned
in Sect. 3 with di�erent parameters. Additionally, an overview of
the runtime performance is given.

The section is structured as follows: First the evaluation environ-
ment and its con�guration is speci�ed, then the test data used for
the evaluation as well as the di�erent attack scenarios are outlined,
�nally the evaluation measures are described and the observed
results are discussed.

4.1 Evaluation environment
The test environment was deployed on a general purpose work-
station with an Intel Xeon CPU E5-1620 v2 at 3.70GHz 8 cores
and 16 GB memory, running Ubuntu 16.04 LTS operating system
and Oracle Java 8u102. The workstation runs virtual servers for an
Apache Web server hosting the MANTIS Bug Tracker System2, a
MySQL database and a reverse proxy. The log messages of these
systems are aggregated using syslog.

4.2 Testdata
To evaluate the presented approach, we used log data from a real
system. We generated the log data in a staged process with de-
signed scenarios. This allowed us to control the actual content and
extract the log lines caused by attacks. To create realistic attacks,
we exploited known vulnerabilities of the MANTIS Bug Tracker
System, listed in CVE database3. For generating the data, we ap-
plied a slightly modi�ed version of the approach presented in [10].
With this method it is possible to generate log �les of any size/-
time interval for a given system by running virtual users in virtual
machines. In our case, we created four user machines that exhibit
a typical behavior on a bug tracker system, for example, logging
in and out, submitting and editing bug reports. We generated log
data over a time window of six hours. After four hours, one of the
users changes his behavior and performs four attacks, each in a 30
minute interval (see Fig. 2). We used the �rst four (anomaly free)
hours of the obtained log data as training data, and the remaining
two hours to evaluate the detection process.

2https://www.mantisbt.org/
3CVE list search: https://cve.mitre.org/cve/cve.html

4

Incremental Clustering for Semi-Supervised Anomaly Detection ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

4.3 Attack scenarios
In order to evaluate our anomaly detection approach in a realistic
context, we searched for known security vulnerabilities of soft-
ware used in our test environment. In case of the MANTIS Bug
Tracker System version 1.2.18, we found multiple CVE entries that
hinted at bugs and exploits of the system. Out of them, we selected
two vulnerabilities appropriate for our use casesne resembling an
SQL-Injection (CVE-2014-9573) and another one that resembles a
re�ective XSS attack (CVE-2016-6837). The SQL-Injection is per-
formed by adding a cookie whose value is not sanitized correctly
before appending it to the query. This attack can be seen in the log
�le as an anomalous SQL-Query and is not trivial to identify. In
the same time interval also an ssh connection and some crontab
statements occured which we also considered anomalous as noth-
ing similar was present in the training data. The re�ective XSS
attack inserts a rather large script into a URL the user visits and
the corresponding log lines should thus be easy to detect.

Furthermore, we added a scenario where an insider with direct
access to the SQL server executes a SQL-Dump. This generates
several hundreds of SQL-Query lines in the log data; some of them
looking suspicious, and some of them looking rather normal. Only
parts of these will be identi�ed as anomalous.

Moreover we simulated a brute force attack which consists of
repeated attempts to log into the admin account with random pass-
words. We expect this to be di�cult to identify as logging in with
wrong credentials is part of the normal user behavior that is in-
cluded in the training phase.

We are aware of the fact that these anomalies could also be
discovered by signature-based approaches, but: (i) the appropriate
signatures are required and need to be frequently updated, (ii) they
need to be set up correctly, and (iii) no zero-day detection is possible.
Our proposal is more generally applicable, more �exible and not
relying on prede�ned signatures.
4.4 Results
In the following the evaluation results are presented. The F1-score
and the ROC are considered as indicators for accuracy. For the sake
of brevity we discuss the results we obtained for the F1-score but
only show the ROC plots. We also asses the scalability of the system.

4.4.1 F1-score. In order to compare the di�erent metrics and
their ability to identify anomalies in the aforementioned attack sce-
narios, we measure the amount of true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN). We computed
the Precision = T P

T P+F P and the Recall = T P
T P+FN . The so-called

F1 − score = 2∗Precision∗Recall
Precision+Recall combines these two values and

rates the accuracy of the evaluated anomaly detection approach. It
takes a high value if both Precision and Recall are close to 1 and a
low value if at least one of them is near 0.

We calculated the F1-scores for each metric and each attack
scenario varying the similarity threshold t in the unit intervall
[0, 1]. A threshold set to t = 0 implies that every new line generates
a new cluster and a threshold set to t = 1 indicates that all lines
are assigned to one single cluster. Note that when using the PCA,
which applies a numerical distance, the threshold t can be varied
in the interval [0,∞).

The result show that the re�ective XSS attack is easily detected
by all metrics and for every string metric there is an interval of

thresholds, where the F1-score is above 0.99. This can be explained
by the anomalous length of the script lines, which are already
sorted out by the line length �lter, and the high amount of special
characters. For the Jaro distance [7], for example, we obtained F1-
scores between 0.75 and 1 for threshold t ∈ [0.2, 0.5], which means
that more small clusters have to be build to detect the XSS attack.
The Needleman-Wunsch metric, instead, reaches the same F1-score
for thresholds t ∈ [0.5, 0.95], which means that a lower number of
clusters is required to detect the anomalous log lines.

In contrast to that, the SQL-Dump lines required a smaller thresh-
old to be successfully detected. All metrics reach F1-scores between
0.8 and 0.96 for threshold t ∈ [0.12, 0.35]. The lines of the SQL-
Injection were also detected opportunely, however a large vari-
ability can be observed, with some F1-scores falling below 0.1 for
certain thresholds. An expected e�ect was that the F1-scores show
peaks between 0.7 and 0.82 for thresholds t ∈ [0.2, 0.6] and de-
crease for thresholds t lower than 0.2 and higher than 0.6. This
can be explained by the fact that a smaller threshold leads to an
increase of false positives causing a small value for Precision, while
a higher threshold leads to fewer true positives identi�ed causing
a small value for Recall . Only in the region where both of these
scores reach a high value, the F1-score maximizes.

Finally, the brute force login attack shows the de�cits of anomaly
detection based on string metrics. Almost all F1-scores of the string
metrics yield zero, meaning that not a single true positive was found.
Unlike the string metrics, the Euclidean metric is able to detect this
kind of attack and showed at least for thresholds t ∈ [0.2, 0.35]
an F1-score between 0.6 and 0.75. As no administrator logged in
during the training phase, the brute force attack with administrator
credentials leads to a point in the PCA-transformed space that lies
just far enough away from the normal user logins to be identi�ed by
the Euclidean distance based anomaly detection. While the string
metrics consider these lines normal as most of the line is identical
except from the username, the number of di�erent characters in
the name is weighted higher by the PCA causing this e�ect.

4.4.2 ROC-curve. A common method for evaluating the perfor-
mance of a classi�cation system is the Receiver Operating Char-
acteristic (ROC) displayed as a curve of the true positive rate
TPR = T P

T P+FN (identical to Recall) against the false positive rate
FPR = F P

FP+T N . Further, the �rst median is added as a base line
that distinguishes a good anomaly detection from a bad one. The
closer the points are to the top left corner of the plot, the more
accurate the detection results are. Points under the �rst median
mean that randomly guessing provides better detection than the
tested algorithm.

The ROC-curves obtained in our experiment are shown in Fig. 3,
they display the results for each metric and the di�erent attacks.
Figures 3(a) and 3(b) show the values for the SQL-Dump and the
SQL-Injection. All the points are located in the origin or above the
�rst median and most of them are located far in the top-left corner
(notice that the scale of the x-axis was set to a value that facilitates
the visualization). The results show that the evaluated approach
is able to detect the simulated attacks with a high probability. The
ROC-curve of the brute force attack in Fig. 3(c) displays that the
detection of these anomalies with the string metrics has a low
accuracy as many of the points are located below the �rst median.
The Euclidean metric proves to be a good choice in this scenario.

5

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy M. Wurzenberger et al.

(a) SQL-Dump (b) SQL-Injection (c) Brute Force Login Attack
Figure 3: ROC curves of metrics in di�erent attack scenarios.

4.4.3 Runtime and Scalability. The runtime of the classi�cation
is of high importance for most practical applications. The chosen
threshold has a large in�uence on the detection performance and
the runtime increases exponentially for an increasing similarity
threshold. This can be easily explained considering that a higher
threshold leads to a higher number of clusters and thus more com-
putation time is needed to calculate the distances between all cluster
candidates. The string metrics, especially the Needleman-Wunsch
metric, require a higher computational e�ort. In contrast to that,
with the Euclidean metric we are able to �nd the clusters very fast
as each line only requires a single matrix multiplication for the
computation of the point in the PCA-transformed space, and the
runtime only depends on the amount of clusters that this point
needs to be compared to.

We further studied the scalability of our algorithm using di�erent
metrics. Our algorithm is able to process log lines at constant time
rate, i.e., the run time increases linearly with the number of log lines,
allowing on-line anomaly detection that can be used in practical
application scenarios.

5 CONCLUSION AND FUTUREWORK
We introduced an incremental clustering approach for anomaly
detection applied on log data. Separating the computationally inten-
sive training phase from the faster detection phase is an advantage
for real-world applications. During the training phase, the cluster-
map is built, which represents the normal system behavior. In the
detection phase each line is compared against the existing clusters
and identi�ed as an anomaly if it cannot be assigned to one of the
existing clusters.

We applied and compared di�erent string metrics and an Eu-
clidean PCA-based method. Di�erent attack scenarios were simu-
lated and assessed in the evaluation. The results showed that the
tested metrics are able to reach both a high precision and recall.
The runtime is linearly dependent on the number of processed log
lines.

Our decision to count the characters of each line to transform
a string into the Euclidean space before applying PCA could be
replaced by another suitable transformation. For example, counting

word occurrences instead of characters or splitting every log line
into k-mer could be valid alternatives.

We plan to extend our approach with a concept of time series
analysis for anomaly detection to identify structural changes in
the system behavior over time. This can be achieved by comparing
clusters over time. Furthermore, we plan to implement an adaptive
version of our algorithm, so that it is able to automatically adapt to
changes in the network, such as new hardware and software.

ACKNOWLEDGMENTS
This work was partly funded by the FFG project synERGY (855457)
and carried out in course of a PhD thesis at the Vienna University
of Technology funded by the FFG project BAESE (852301).

REFERENCES
[1] Pavel Berkhin. 2006. A survey of clustering data mining techniques. In Grouping

multidimensional data. Springer, 25–71.
[2] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.

When is “nearest neighbor” meaningful?. In International conference on database
theory. Springer, 217–235.

[3] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 15.

[4] Mohammadreza Ghodsi, Bo Liu, and Mihai Pop. 2011. DNACLUST: accurate
and e�cient clustering of phylogenetic marker genes. BMC bioinformatics 12, 1
(2011), 271.

[5] Markus Goldstein and Seiichi Uchida. 2016. A comparative evaluation of un-
supervised anomaly detection algorithms for multivariate data. PloS one 11, 4
(2016), e0152173.

[6] Wael H Gomaa and Aly A Fahmy. 2013. A survey of text similarity approaches.
International Journal of Computer Applications 68, 13 (2013).

[7] Matthew A Jaro. 1989. Advances in record-linkage methodology as applied to
matching the 1985 census of Tampa, Florida. J. Amer. Statist. Assoc. 84, 406 (1989),
414–420.

[8] Karen A. Scarfone and Peter M. Mell. 2007. SP 800-94. Guide to Intrusion Detection
and Prevention Systems (IDPS). Technical Report. Gaithersburg, MD, USA.

[9] Jonathon Shlens. 2014. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100 (2014).

[10] Florian Skopik, Giuseppe Settanni, Roman Fiedler, and Ivo Friedberg. 2014. Semi-
synthetic data set generation for security software evaluation. In Privacy, Security
and Trust (PST), 2014 Twelfth Annual International Conference on. IEEE, 156–163.

[11] Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event
logs. In IP Operations & Management, 2003.(IPOM 2003). 3rd IEEE Workshop on.
IEEE, 119–126.

6

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Model Design
	3.1 Incremental clustering
	3.2 Description of model MI
	3.3 String metrics
	3.4 Description of model MII

	4 Evaluation
	4.1 Evaluation environment
	4.2 Testdata
	4.3 Attack scenarios
	4.4 Results

	5 Conclusion and Future Work
	Acknowledgments
	References

